summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_scheduler.cpp
blob: 1bce63a560562c1f047c0354b6fb828fc9b554b1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <bit>

#include "common/assert.h"
#include "common/bit_util.h"
#include "common/fiber.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/k_interrupt_manager.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_scoped_scheduler_lock_and_sleep.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"

namespace Kernel {

static void IncrementScheduledCount(Kernel::KThread* thread) {
    if (auto process = thread->GetOwnerProcess(); process) {
        process->IncrementScheduledCount();
    }
}

KScheduler::KScheduler(KernelCore& kernel) : m_kernel{kernel} {
    m_switch_fiber = std::make_shared<Common::Fiber>([this] {
        while (true) {
            ScheduleImplFiber();
        }
    });

    m_state.needs_scheduling = true;
}

KScheduler::~KScheduler() = default;

void KScheduler::SetInterruptTaskRunnable() {
    m_state.interrupt_task_runnable = true;
    m_state.needs_scheduling = true;
}

void KScheduler::RequestScheduleOnInterrupt() {
    m_state.needs_scheduling = true;

    if (CanSchedule(m_kernel)) {
        ScheduleOnInterrupt();
    }
}

void KScheduler::DisableScheduling(KernelCore& kernel) {
    ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 0);
    GetCurrentThread(kernel).DisableDispatch();
}

void KScheduler::EnableScheduling(KernelCore& kernel, u64 cores_needing_scheduling) {
    ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() >= 1);

    auto* scheduler{kernel.CurrentScheduler()};

    if (!scheduler || kernel.IsPhantomModeForSingleCore()) {
        KScheduler::RescheduleCores(kernel, cores_needing_scheduling);
        KScheduler::RescheduleCurrentHLEThread(kernel);
        return;
    }

    scheduler->RescheduleOtherCores(cores_needing_scheduling);

    if (GetCurrentThread(kernel).GetDisableDispatchCount() > 1) {
        GetCurrentThread(kernel).EnableDispatch();
    } else {
        scheduler->RescheduleCurrentCore();
    }
}

void KScheduler::RescheduleCurrentHLEThread(KernelCore& kernel) {
    // HACK: we cannot schedule from this thread, it is not a core thread
    ASSERT(GetCurrentThread(kernel).GetDisableDispatchCount() == 1);

    // Ensure dummy threads that are waiting block.
    GetCurrentThread(kernel).DummyThreadBeginWait();

    ASSERT(GetCurrentThread(kernel).GetState() != ThreadState::Waiting);
    GetCurrentThread(kernel).EnableDispatch();
}

u64 KScheduler::UpdateHighestPriorityThreads(KernelCore& kernel) {
    if (IsSchedulerUpdateNeeded(kernel)) {
        return UpdateHighestPriorityThreadsImpl(kernel);
    } else {
        return 0;
    }
}

void KScheduler::Schedule() {
    ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);
    ASSERT(m_core_id == GetCurrentCoreId(m_kernel));

    ScheduleImpl();
}

void KScheduler::ScheduleOnInterrupt() {
    GetCurrentThread(m_kernel).DisableDispatch();
    Schedule();
    GetCurrentThread(m_kernel).EnableDispatch();
}

void KScheduler::PreemptSingleCore() {
    GetCurrentThread(m_kernel).DisableDispatch();

    auto* thread = GetCurrentThreadPointer(m_kernel);
    auto& previous_scheduler = m_kernel.Scheduler(thread->GetCurrentCore());
    previous_scheduler.Unload(thread);

    Common::Fiber::YieldTo(thread->GetHostContext(), *m_switch_fiber);

    GetCurrentThread(m_kernel).EnableDispatch();
}

void KScheduler::RescheduleCurrentCore() {
    ASSERT(!m_kernel.IsPhantomModeForSingleCore());
    ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);

    GetCurrentThread(m_kernel).EnableDispatch();

    if (m_state.needs_scheduling.load()) {
        // Disable interrupts, and then check again if rescheduling is needed.
        // KScopedInterruptDisable intr_disable;

        m_kernel.CurrentScheduler()->RescheduleCurrentCoreImpl();
    }
}

void KScheduler::RescheduleCurrentCoreImpl() {
    // Check that scheduling is needed.
    if (m_state.needs_scheduling.load()) [[likely]] {
        GetCurrentThread(m_kernel).DisableDispatch();
        Schedule();
        GetCurrentThread(m_kernel).EnableDispatch();
    }
}

void KScheduler::Initialize(KThread* main_thread, KThread* idle_thread, s32 core_id) {
    // Set core ID/idle thread/interrupt task manager.
    m_core_id = core_id;
    m_idle_thread = idle_thread;
    // m_state.idle_thread_stack = m_idle_thread->GetStackTop();
    // m_state.interrupt_task_manager = std::addressof(kernel.GetInterruptTaskManager());

    // Insert the main thread into the priority queue.
    // {
    //     KScopedSchedulerLock lk{m_kernel};
    //     GetPriorityQueue(m_kernel).PushBack(GetCurrentThreadPointer(m_kernel));
    //     SetSchedulerUpdateNeeded(m_kernel);
    // }

    // Bind interrupt handler.
    // kernel.GetInterruptManager().BindHandler(
    //     GetSchedulerInterruptHandler(m_kernel), KInterruptName::Scheduler, m_core_id,
    //     KInterruptController::PriorityLevel::Scheduler, false, false);

    // Set the current thread.
    m_current_thread = main_thread;
}

void KScheduler::Activate() {
    ASSERT(GetCurrentThread(m_kernel).GetDisableDispatchCount() == 1);

    // m_state.should_count_idle = KTargetSystem::IsDebugMode();
    m_is_active = true;
    RescheduleCurrentCore();
}

void KScheduler::OnThreadStart() {
    GetCurrentThread(m_kernel).EnableDispatch();
}

u64 KScheduler::UpdateHighestPriorityThread(KThread* highest_thread) {
    if (KThread* prev_highest_thread = m_state.highest_priority_thread;
        prev_highest_thread != highest_thread) [[likely]] {
        if (prev_highest_thread != nullptr) [[likely]] {
            IncrementScheduledCount(prev_highest_thread);
            prev_highest_thread->SetLastScheduledTick(
                m_kernel.System().CoreTiming().GetClockTicks());
        }
        if (m_state.should_count_idle) {
            if (highest_thread != nullptr) [[likely]] {
                if (KProcess* process = highest_thread->GetOwnerProcess(); process != nullptr) {
                    process->SetRunningThread(m_core_id, highest_thread, m_state.idle_count, 0);
                }
            } else {
                m_state.idle_count++;
            }
        }

        m_state.highest_priority_thread = highest_thread;
        m_state.needs_scheduling = true;
        return (1ULL << m_core_id);
    } else {
        return 0;
    }
}

u64 KScheduler::UpdateHighestPriorityThreadsImpl(KernelCore& kernel) {
    ASSERT(IsSchedulerLockedByCurrentThread(kernel));

    // Clear that we need to update.
    ClearSchedulerUpdateNeeded(kernel);

    u64 cores_needing_scheduling = 0, idle_cores = 0;
    KThread* top_threads[Core::Hardware::NUM_CPU_CORES];
    auto& priority_queue = GetPriorityQueue(kernel);

    // We want to go over all cores, finding the highest priority thread and determining if
    // scheduling is needed for that core.
    for (size_t core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
        KThread* top_thread = priority_queue.GetScheduledFront(static_cast<s32>(core_id));
        if (top_thread != nullptr) {
            // We need to check if the thread's process has a pinned thread.
            if (KProcess* parent = top_thread->GetOwnerProcess()) {
                // Check that there's a pinned thread other than the current top thread.
                if (KThread* pinned = parent->GetPinnedThread(static_cast<s32>(core_id));
                    pinned != nullptr && pinned != top_thread) {
                    // We need to prefer threads with kernel waiters to the pinned thread.
                    if (top_thread->GetNumKernelWaiters() ==
                        0 /* && top_thread != parent->GetExceptionThread() */) {
                        // If the pinned thread is runnable, use it.
                        if (pinned->GetRawState() == ThreadState::Runnable) {
                            top_thread = pinned;
                        } else {
                            top_thread = nullptr;
                        }
                    }
                }
            }
        } else {
            idle_cores |= (1ULL << core_id);
        }

        top_threads[core_id] = top_thread;
        cores_needing_scheduling |=
            kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
    }

    // Idle cores are bad. We're going to try to migrate threads to each idle core in turn.
    while (idle_cores != 0) {
        const s32 core_id = static_cast<s32>(std::countr_zero(idle_cores));

        if (KThread* suggested = priority_queue.GetSuggestedFront(core_id); suggested != nullptr) {
            s32 migration_candidates[Core::Hardware::NUM_CPU_CORES];
            size_t num_candidates = 0;

            // While we have a suggested thread, try to migrate it!
            while (suggested != nullptr) {
                // Check if the suggested thread is the top thread on its core.
                const s32 suggested_core = suggested->GetActiveCore();
                if (KThread* top_thread =
                        (suggested_core >= 0) ? top_threads[suggested_core] : nullptr;
                    top_thread != suggested) {
                    // Make sure we're not dealing with threads too high priority for migration.
                    if (top_thread != nullptr &&
                        top_thread->GetPriority() < HighestCoreMigrationAllowedPriority) {
                        break;
                    }

                    // The suggested thread isn't bound to its core, so we can migrate it!
                    suggested->SetActiveCore(core_id);
                    priority_queue.ChangeCore(suggested_core, suggested);
                    top_threads[core_id] = suggested;
                    cores_needing_scheduling |=
                        kernel.Scheduler(core_id).UpdateHighestPriorityThread(top_threads[core_id]);
                    break;
                }

                // Note this core as a candidate for migration.
                ASSERT(num_candidates < Core::Hardware::NUM_CPU_CORES);
                migration_candidates[num_candidates++] = suggested_core;
                suggested = priority_queue.GetSuggestedNext(core_id, suggested);
            }

            // If suggested is nullptr, we failed to migrate a specific thread. So let's try all our
            // candidate cores' top threads.
            if (suggested == nullptr) {
                for (size_t i = 0; i < num_candidates; i++) {
                    // Check if there's some other thread that can run on the candidate core.
                    const s32 candidate_core = migration_candidates[i];
                    suggested = top_threads[candidate_core];
                    if (KThread* next_on_candidate_core =
                            priority_queue.GetScheduledNext(candidate_core, suggested);
                        next_on_candidate_core != nullptr) {
                        // The candidate core can run some other thread! We'll migrate its current
                        // top thread to us.
                        top_threads[candidate_core] = next_on_candidate_core;
                        cores_needing_scheduling |=
                            kernel.Scheduler(candidate_core)
                                .UpdateHighestPriorityThread(top_threads[candidate_core]);

                        // Perform the migration.
                        suggested->SetActiveCore(core_id);
                        priority_queue.ChangeCore(candidate_core, suggested);
                        top_threads[core_id] = suggested;
                        cores_needing_scheduling |=
                            kernel.Scheduler(core_id).UpdateHighestPriorityThread(
                                top_threads[core_id]);
                        break;
                    }
                }
            }
        }

        idle_cores &= ~(1ULL << core_id);
    }

    // HACK: any waiting dummy threads can wake up now.
    kernel.GlobalSchedulerContext().WakeupWaitingDummyThreads();

    // HACK: if we are a dummy thread, and we need to go sleep, indicate
    // that for when the lock is released.
    KThread* const cur_thread = GetCurrentThreadPointer(kernel);
    if (cur_thread->IsDummyThread() && cur_thread->GetState() != ThreadState::Runnable) {
        cur_thread->RequestDummyThreadWait();
    }

    return cores_needing_scheduling;
}

void KScheduler::SwitchThread(KThread* next_thread) {
    KProcess* const cur_process = GetCurrentProcessPointer(m_kernel);
    KThread* const cur_thread = GetCurrentThreadPointer(m_kernel);

    // We never want to schedule a null thread, so use the idle thread if we don't have a next.
    if (next_thread == nullptr) {
        next_thread = m_idle_thread;
    }

    if (next_thread->GetCurrentCore() != m_core_id) {
        next_thread->SetCurrentCore(m_core_id);
    }

    // If we're not actually switching thread, there's nothing to do.
    if (next_thread == cur_thread) {
        return;
    }

    // Next thread is now known not to be nullptr, and must not be dispatchable.
    ASSERT(next_thread->GetDisableDispatchCount() == 1);
    ASSERT(!next_thread->IsDummyThread());

    // Update the CPU time tracking variables.
    const s64 prev_tick = m_last_context_switch_time;
    const s64 cur_tick = m_kernel.System().CoreTiming().GetClockTicks();
    const s64 tick_diff = cur_tick - prev_tick;
    cur_thread->AddCpuTime(m_core_id, tick_diff);
    if (cur_process != nullptr) {
        cur_process->AddCpuTime(tick_diff);
    }
    m_last_context_switch_time = cur_tick;

    // Update our previous thread.
    if (cur_process != nullptr) {
        if (!cur_thread->IsTerminationRequested() && cur_thread->GetActiveCore() == m_core_id)
            [[likely]] {
            m_state.prev_thread = cur_thread;
        } else {
            m_state.prev_thread = nullptr;
        }
    }

    // Switch the current process, if we're switching processes.
    // if (KProcess *next_process = next_thread->GetOwnerProcess(); next_process != cur_process) {
    //     KProcess::Switch(cur_process, next_process);
    // }

    // Set the new thread.
    SetCurrentThread(m_kernel, next_thread);
    m_current_thread = next_thread;

    // Set the new Thread Local region.
    // cpu::SwitchThreadLocalRegion(GetInteger(next_thread->GetThreadLocalRegionAddress()));
}

void KScheduler::ScheduleImpl() {
    // First, clear the needs scheduling bool.
    m_state.needs_scheduling.store(false, std::memory_order_relaxed);
    std::atomic_thread_fence(std::memory_order_seq_cst);

    // Load the appropriate thread pointers for scheduling.
    KThread* const cur_thread{GetCurrentThreadPointer(m_kernel)};
    KThread* highest_priority_thread{m_state.highest_priority_thread};

    // Check whether there are runnable interrupt tasks.
    if (m_state.interrupt_task_runnable) {
        // The interrupt task is runnable.
        // We want to switch to the interrupt task/idle thread.
        highest_priority_thread = nullptr;
    }

    // If there aren't, we want to check if the highest priority thread is the same as the current
    // thread.
    if (highest_priority_thread == cur_thread) {
        // If they're the same, then we can just issue a memory barrier and return.
        std::atomic_thread_fence(std::memory_order_seq_cst);
        return;
    }

    // The highest priority thread is not the same as the current thread.
    // Jump to the switcher and continue executing from there.
    m_switch_cur_thread = cur_thread;
    m_switch_highest_priority_thread = highest_priority_thread;
    m_switch_from_schedule = true;
    Common::Fiber::YieldTo(cur_thread->m_host_context, *m_switch_fiber);

    // Returning from ScheduleImpl occurs after this thread has been scheduled again.
}

void KScheduler::ScheduleImplFiber() {
    KThread* const cur_thread{m_switch_cur_thread};
    KThread* highest_priority_thread{m_switch_highest_priority_thread};

    // If we're not coming from scheduling (i.e., we came from SC preemption),
    // we should restart the scheduling loop directly. Not accurate to HOS.
    if (!m_switch_from_schedule) {
        goto retry;
    }

    // Mark that we are not coming from scheduling anymore.
    m_switch_from_schedule = false;

    // Save the original thread context.
    Unload(cur_thread);

    // The current thread's context has been entirely taken care of.
    // Now we want to loop until we successfully switch the thread context.
    while (true) {
        // We're starting to try to do the context switch.
        // Check if the highest priority thread is null.
        if (!highest_priority_thread) {
            // The next thread is nullptr!

            // Switch to the idle thread. Note: HOS treats idling as a special case for
            // performance. This is not *required* for yuzu's purposes, and for singlecore
            // compatibility, we can just move the logic that would go here into the execution
            // of the idle thread. If we ever remove singlecore, we should implement this
            // accurately to HOS.
            highest_priority_thread = m_idle_thread;
        }

        // We want to try to lock the highest priority thread's context.
        // Try to take it.
        while (!highest_priority_thread->m_context_guard.try_lock()) {
            // The highest priority thread's context is already locked.
            // Check if we need scheduling. If we don't, we can retry directly.
            if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
                // If we do, another core is interfering, and we must start again.
                goto retry;
            }
        }

        // It's time to switch the thread.
        // Switch to the highest priority thread.
        SwitchThread(highest_priority_thread);

        // Check if we need scheduling. If we do, then we can't complete the switch and should
        // retry.
        if (m_state.needs_scheduling.load(std::memory_order_seq_cst)) {
            // Our switch failed.
            // We should unlock the thread context, and then retry.
            highest_priority_thread->m_context_guard.unlock();
            goto retry;
        } else {
            break;
        }

    retry:

        // We failed to successfully do the context switch, and need to retry.
        // Clear needs_scheduling.
        m_state.needs_scheduling.store(false, std::memory_order_relaxed);
        std::atomic_thread_fence(std::memory_order_seq_cst);

        // Refresh the highest priority thread.
        highest_priority_thread = m_state.highest_priority_thread;
    }

    // Reload the guest thread context.
    Reload(highest_priority_thread);

    // Reload the host thread.
    Common::Fiber::YieldTo(m_switch_fiber, *highest_priority_thread->m_host_context);
}

void KScheduler::Unload(KThread* thread) {
    auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
    cpu_core.SaveContext(thread->GetContext32());
    cpu_core.SaveContext(thread->GetContext64());
    // Save the TPIDR_EL0 system register in case it was modified.
    thread->SetTpidrEl0(cpu_core.GetTPIDR_EL0());
    cpu_core.ClearExclusiveState();

    // Check if the thread is terminated by checking the DPC flags.
    if ((thread->GetStackParameters().dpc_flags & static_cast<u32>(DpcFlag::Terminated)) == 0) {
        // The thread isn't terminated, so we want to unlock it.
        thread->m_context_guard.unlock();
    }
}

void KScheduler::Reload(KThread* thread) {
    auto& cpu_core = m_kernel.System().ArmInterface(m_core_id);
    auto* process = thread->GetOwnerProcess();
    cpu_core.LoadContext(thread->GetContext32());
    cpu_core.LoadContext(thread->GetContext64());
    cpu_core.SetTlsAddress(GetInteger(thread->GetTlsAddress()));
    cpu_core.SetTPIDR_EL0(thread->GetTpidrEl0());
    cpu_core.LoadWatchpointArray(process ? &process->GetWatchpoints() : nullptr);
    cpu_core.ClearExclusiveState();
}

void KScheduler::ClearPreviousThread(KernelCore& kernel, KThread* thread) {
    ASSERT(IsSchedulerLockedByCurrentThread(kernel));
    for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; ++i) {
        // Get an atomic reference to the core scheduler's previous thread.
        auto& prev_thread{kernel.Scheduler(i).m_state.prev_thread};

        // Atomically clear the previous thread if it's our target.
        KThread* compare = thread;
        prev_thread.compare_exchange_strong(compare, nullptr, std::memory_order_seq_cst);
    }
}

void KScheduler::OnThreadStateChanged(KernelCore& kernel, KThread* thread, ThreadState old_state) {
    ASSERT(IsSchedulerLockedByCurrentThread(kernel));

    // Check if the state has changed, because if it hasn't there's nothing to do.
    const ThreadState cur_state = thread->GetRawState();
    if (cur_state == old_state) {
        return;
    }

    // Update the priority queues.
    if (old_state == ThreadState::Runnable) {
        // If we were previously runnable, then we're not runnable now, and we should remove.
        GetPriorityQueue(kernel).Remove(thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);

        if (thread->IsDummyThread()) {
            // HACK: if this is a dummy thread, it should no longer wake up when the
            // scheduler lock is released.
            kernel.GlobalSchedulerContext().UnregisterDummyThreadForWakeup(thread);
        }
    } else if (cur_state == ThreadState::Runnable) {
        // If we're now runnable, then we weren't previously, and we should add.
        GetPriorityQueue(kernel).PushBack(thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);

        if (thread->IsDummyThread()) {
            // HACK: if this is a dummy thread, it should wake up when the scheduler
            // lock is released.
            kernel.GlobalSchedulerContext().RegisterDummyThreadForWakeup(thread);
        }
    }
}

void KScheduler::OnThreadPriorityChanged(KernelCore& kernel, KThread* thread, s32 old_priority) {
    ASSERT(IsSchedulerLockedByCurrentThread(kernel));

    // If the thread is runnable, we want to change its priority in the queue.
    if (thread->GetRawState() == ThreadState::Runnable) {
        GetPriorityQueue(kernel).ChangePriority(old_priority,
                                                thread == GetCurrentThreadPointer(kernel), thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);
    }
}

void KScheduler::OnThreadAffinityMaskChanged(KernelCore& kernel, KThread* thread,
                                             const KAffinityMask& old_affinity, s32 old_core) {
    ASSERT(IsSchedulerLockedByCurrentThread(kernel));

    // If the thread is runnable, we want to change its affinity in the queue.
    if (thread->GetRawState() == ThreadState::Runnable) {
        GetPriorityQueue(kernel).ChangeAffinityMask(old_core, old_affinity, thread);
        IncrementScheduledCount(thread);
        SetSchedulerUpdateNeeded(kernel);
    }
}

void KScheduler::RotateScheduledQueue(KernelCore& kernel, s32 core_id, s32 priority) {
    ASSERT(IsSchedulerLockedByCurrentThread(kernel));

    // Get a reference to the priority queue.
    auto& priority_queue = GetPriorityQueue(kernel);

    // Rotate the front of the queue to the end.
    KThread* top_thread = priority_queue.GetScheduledFront(core_id, priority);
    KThread* next_thread = nullptr;
    if (top_thread != nullptr) {
        next_thread = priority_queue.MoveToScheduledBack(top_thread);
        if (next_thread != top_thread) {
            IncrementScheduledCount(top_thread);
            IncrementScheduledCount(next_thread);
        }
    }

    // While we have a suggested thread, try to migrate it!
    {
        KThread* suggested = priority_queue.GetSuggestedFront(core_id, priority);
        while (suggested != nullptr) {
            // Check if the suggested thread is the top thread on its core.
            const s32 suggested_core = suggested->GetActiveCore();
            if (KThread* top_on_suggested_core =
                    (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
                                          : nullptr;
                top_on_suggested_core != suggested) {
                // If the next thread is a new thread that has been waiting longer than our
                // suggestion, we prefer it to our suggestion.
                if (top_thread != next_thread && next_thread != nullptr &&
                    next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick()) {
                    suggested = nullptr;
                    break;
                }

                // If we're allowed to do a migration, do one.
                // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the suggestion
                // to the front of the queue.
                if (top_on_suggested_core == nullptr ||
                    top_on_suggested_core->GetPriority() >= HighestCoreMigrationAllowedPriority) {
                    suggested->SetActiveCore(core_id);
                    priority_queue.ChangeCore(suggested_core, suggested, true);
                    IncrementScheduledCount(suggested);
                    break;
                }
            }

            // Get the next suggestion.
            suggested = priority_queue.GetSamePriorityNext(core_id, suggested);
        }
    }

    // Now that we might have migrated a thread with the same priority, check if we can do better.
    {
        KThread* best_thread = priority_queue.GetScheduledFront(core_id);
        if (best_thread == GetCurrentThreadPointer(kernel)) {
            best_thread = priority_queue.GetScheduledNext(core_id, best_thread);
        }

        // If the best thread we can choose has a priority the same or worse than ours, try to
        // migrate a higher priority thread.
        if (best_thread != nullptr && best_thread->GetPriority() >= priority) {
            KThread* suggested = priority_queue.GetSuggestedFront(core_id);
            while (suggested != nullptr) {
                // If the suggestion's priority is the same as ours, don't bother.
                if (suggested->GetPriority() >= best_thread->GetPriority()) {
                    break;
                }

                // Check if the suggested thread is the top thread on its core.
                const s32 suggested_core = suggested->GetActiveCore();
                if (KThread* top_on_suggested_core =
                        (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
                                              : nullptr;
                    top_on_suggested_core != suggested) {
                    // If we're allowed to do a migration, do one.
                    // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
                    // suggestion to the front of the queue.
                    if (top_on_suggested_core == nullptr ||
                        top_on_suggested_core->GetPriority() >=
                            HighestCoreMigrationAllowedPriority) {
                        suggested->SetActiveCore(core_id);
                        priority_queue.ChangeCore(suggested_core, suggested, true);
                        IncrementScheduledCount(suggested);
                        break;
                    }
                }

                // Get the next suggestion.
                suggested = priority_queue.GetSuggestedNext(core_id, suggested);
            }
        }
    }

    // After a rotation, we need a scheduler update.
    SetSchedulerUpdateNeeded(kernel);
}

void KScheduler::YieldWithoutCoreMigration(KernelCore& kernel) {
    // Validate preconditions.
    ASSERT(CanSchedule(kernel));
    ASSERT(GetCurrentProcessPointer(kernel) != nullptr);

    // Get the current thread and process.
    KThread& cur_thread = GetCurrentThread(kernel);
    KProcess& cur_process = GetCurrentProcess(kernel);

    // If the thread's yield count matches, there's nothing for us to do.
    if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
        return;
    }

    // Get a reference to the priority queue.
    auto& priority_queue = GetPriorityQueue(kernel);

    // Perform the yield.
    {
        KScopedSchedulerLock sl{kernel};

        const auto cur_state = cur_thread.GetRawState();
        if (cur_state == ThreadState::Runnable) {
            // Put the current thread at the back of the queue.
            KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
            IncrementScheduledCount(std::addressof(cur_thread));

            // If the next thread is different, we have an update to perform.
            if (next_thread != std::addressof(cur_thread)) {
                SetSchedulerUpdateNeeded(kernel);
            } else {
                // Otherwise, set the thread's yield count so that we won't waste work until the
                // process is scheduled again.
                cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
            }
        }
    }
}

void KScheduler::YieldWithCoreMigration(KernelCore& kernel) {
    // Validate preconditions.
    ASSERT(CanSchedule(kernel));
    ASSERT(GetCurrentProcessPointer(kernel) != nullptr);

    // Get the current thread and process.
    KThread& cur_thread = GetCurrentThread(kernel);
    KProcess& cur_process = GetCurrentProcess(kernel);

    // If the thread's yield count matches, there's nothing for us to do.
    if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
        return;
    }

    // Get a reference to the priority queue.
    auto& priority_queue = GetPriorityQueue(kernel);

    // Perform the yield.
    {
        KScopedSchedulerLock sl{kernel};

        const auto cur_state = cur_thread.GetRawState();
        if (cur_state == ThreadState::Runnable) {
            // Get the current active core.
            const s32 core_id = cur_thread.GetActiveCore();

            // Put the current thread at the back of the queue.
            KThread* next_thread = priority_queue.MoveToScheduledBack(std::addressof(cur_thread));
            IncrementScheduledCount(std::addressof(cur_thread));

            // While we have a suggested thread, try to migrate it!
            bool recheck = false;
            KThread* suggested = priority_queue.GetSuggestedFront(core_id);
            while (suggested != nullptr) {
                // Check if the suggested thread is the thread running on its core.
                const s32 suggested_core = suggested->GetActiveCore();

                if (KThread* running_on_suggested_core =
                        (suggested_core >= 0)
                            ? kernel.Scheduler(suggested_core).m_state.highest_priority_thread
                            : nullptr;
                    running_on_suggested_core != suggested) {
                    // If the current thread's priority is higher than our suggestion's we prefer
                    // the next thread to the suggestion. We also prefer the next thread when the
                    // current thread's priority is equal to the suggestions, but the next thread
                    // has been waiting longer.
                    if ((suggested->GetPriority() > cur_thread.GetPriority()) ||
                        (suggested->GetPriority() == cur_thread.GetPriority() &&
                         next_thread != std::addressof(cur_thread) &&
                         next_thread->GetLastScheduledTick() < suggested->GetLastScheduledTick())) {
                        suggested = nullptr;
                        break;
                    }

                    // If we're allowed to do a migration, do one.
                    // NOTE: Unlike migrations in UpdateHighestPriorityThread, this moves the
                    // suggestion to the front of the queue.
                    if (running_on_suggested_core == nullptr ||
                        running_on_suggested_core->GetPriority() >=
                            HighestCoreMigrationAllowedPriority) {
                        suggested->SetActiveCore(core_id);
                        priority_queue.ChangeCore(suggested_core, suggested, true);
                        IncrementScheduledCount(suggested);
                        break;
                    } else {
                        // We couldn't perform a migration, but we should check again on a future
                        // yield.
                        recheck = true;
                    }
                }

                // Get the next suggestion.
                suggested = priority_queue.GetSuggestedNext(core_id, suggested);
            }

            // If we still have a suggestion or the next thread is different, we have an update to
            // perform.
            if (suggested != nullptr || next_thread != std::addressof(cur_thread)) {
                SetSchedulerUpdateNeeded(kernel);
            } else if (!recheck) {
                // Otherwise if we don't need to re-check, set the thread's yield count so that we
                // won't waste work until the process is scheduled again.
                cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
            }
        }
    }
}

void KScheduler::YieldToAnyThread(KernelCore& kernel) {
    // Validate preconditions.
    ASSERT(CanSchedule(kernel));
    ASSERT(GetCurrentProcessPointer(kernel) != nullptr);

    // Get the current thread and process.
    KThread& cur_thread = GetCurrentThread(kernel);
    KProcess& cur_process = GetCurrentProcess(kernel);

    // If the thread's yield count matches, there's nothing for us to do.
    if (cur_thread.GetYieldScheduleCount() == cur_process.GetScheduledCount()) {
        return;
    }

    // Get a reference to the priority queue.
    auto& priority_queue = GetPriorityQueue(kernel);

    // Perform the yield.
    {
        KScopedSchedulerLock sl{kernel};

        const auto cur_state = cur_thread.GetRawState();
        if (cur_state == ThreadState::Runnable) {
            // Get the current active core.
            const s32 core_id = cur_thread.GetActiveCore();

            // Migrate the current thread to core -1.
            cur_thread.SetActiveCore(-1);
            priority_queue.ChangeCore(core_id, std::addressof(cur_thread));
            IncrementScheduledCount(std::addressof(cur_thread));

            // If there's nothing scheduled, we can try to perform a migration.
            if (priority_queue.GetScheduledFront(core_id) == nullptr) {
                // While we have a suggested thread, try to migrate it!
                KThread* suggested = priority_queue.GetSuggestedFront(core_id);
                while (suggested != nullptr) {
                    // Check if the suggested thread is the top thread on its core.
                    const s32 suggested_core = suggested->GetActiveCore();
                    if (KThread* top_on_suggested_core =
                            (suggested_core >= 0) ? priority_queue.GetScheduledFront(suggested_core)
                                                  : nullptr;
                        top_on_suggested_core != suggested) {
                        // If we're allowed to do a migration, do one.
                        if (top_on_suggested_core == nullptr ||
                            top_on_suggested_core->GetPriority() >=
                                HighestCoreMigrationAllowedPriority) {
                            suggested->SetActiveCore(core_id);
                            priority_queue.ChangeCore(suggested_core, suggested);
                            IncrementScheduledCount(suggested);
                        }

                        // Regardless of whether we migrated, we had a candidate, so we're done.
                        break;
                    }

                    // Get the next suggestion.
                    suggested = priority_queue.GetSuggestedNext(core_id, suggested);
                }

                // If the suggestion is different from the current thread, we need to perform an
                // update.
                if (suggested != std::addressof(cur_thread)) {
                    SetSchedulerUpdateNeeded(kernel);
                } else {
                    // Otherwise, set the thread's yield count so that we won't waste work until the
                    // process is scheduled again.
                    cur_thread.SetYieldScheduleCount(cur_process.GetScheduledCount());
                }
            } else {
                // Otherwise, we have an update to perform.
                SetSchedulerUpdateNeeded(kernel);
            }
        }
    }
}

void KScheduler::RescheduleOtherCores(u64 cores_needing_scheduling) {
    if (const u64 core_mask = cores_needing_scheduling & ~(1ULL << m_core_id); core_mask != 0) {
        RescheduleCores(m_kernel, core_mask);
    }
}

void KScheduler::RescheduleCores(KernelCore& kernel, u64 core_mask) {
    // Send IPI
    for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
        if (core_mask & (1ULL << i)) {
            kernel.PhysicalCore(i).Interrupt();
        }
    }
}

} // namespace Kernel